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using a class of pole-dominated amplitudes. We conclude that consistent formulations of

anomalous models require necessarily the cancellation of these polar contributions. Estab-

lishing the UV significance of these terms provides a natural bridge between the anomalous
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1 Introduction and summary

One of the subtle features of the axial anomaly is the presence of massless poles in the

corresponding AVV correlator, which show up in special kinematical regions and in the

chiral limit, and whose interpretation is at times rather puzzling. In fact, on several

occasions the correct interpretation of these singularities has been debated at length [1, 2].

Our interest in the topic, which is one of our reasons and motivations for this analysis,

has been the result of a recent work in which we have suggested the subtraction of the

anomaly pole in theories involving anomalous U(1)’s to ensure anomaly cancellation, by
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defining a new gauge invariant vertex [3]. The re-defined vertex is non-local, while its Ward

identity is expressed in terms of local interactions and can be interpreted diagrammatically

by introducing a massless pseudoscalar - an axion field - coupled to gauge fields via Wess-

Zumino terms. This coupling is induced by the anomaly and the subtraction of the anomaly

pole is expected to represent the only consistent way by which a completion of an anomalous

theory is supposed to work in the UV region.

However, as known from several previous studies of this vertex, the presence of a longi-

tudinal pole in an anomaly diagram has always been established only for special kinematical

configurations and this raises a serious concern regarding the meaning of the subtraction,

introduced to restore the Ward identity at high energy, a subtraction which should be nat-

urally performed by the UV completion of the anomalous theory. The main objective of

this work is to show that the effective action of an anomalous gauge theory is affected by

singularities which are not necessarily detected using a dispersive analysis in the infrared

(IR) [4] (see also [5] for a recent study), and as such are IR decoupled. These additional

poles, which account for the anomaly, can be extracted by a complete computation of the

effective action and have a direct ultraviolet UV significance. For this reason, assessing

the UV significance of an anomaly pole, whose identification, in the past, has always been

linked to the infrared (IR) using a spectral approach, certainly helps in establishing a nat-

ural link between an anomalous theory and its completion, which should guarantee the

cancellation of these contributions.

To show the existence of these singularities under the most general kinematical con-

ditions we proceed with a complete and comparative study of the anomaly diagram in

two different parameterizations which are both essential in order to understand the na-

ture of the longitudinal subtraction. In fact, only a complete and off-shell computation of

the effective action for an anomalous theory allows the identification of these terms which

escape detection with the usual spectral analysis. The nature of these additional singu-

larities of the effective action which, in some cases, are not evident due to the presence

of Schouten relations, is resolved by studying a special class of amplitudes in which the

presence of a pole dominance can be immediately linked to a non unitary behaviour of

the theory. Having clarified these points, we proceed by discussing the structure of the

anomalous effective action of a typical anomalous theory, represented by expansions in

the fermion mass (m). This can be viewed as the generalization to the anomalous case

of the usual Euler-Heisenberg effective action, which now contains additional (anomalous)

trilinear interactions that are absent in the QED case, due to C-invariance.

Then we turn to a brief discussion of anomaly poles in theories with extra dimen-

sions. In this case we briefly point out that a mechanism of inflow which does not erase

the anomaly poles of the effective (anomalous) theory localized on the brane, may run

into additional difficulties with unitarity, besides the well-known ones [6–8] which imply a

truncation on the KK modes. The example of a simple S1/Z2 compactification of a 5-D

gauge theory with an inflow generated by a 5-D Chern-Simons term, following closely the

construction of [9], is brought up to illustrate our point. We conclude with some perspec-

tives on how to extend our studies of pole dominance to other situations, such as in the

conformal anomaly, which could help in supporting quite independently our results.
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2 Anomaly poles and general kinematics: the Rosenberg case

One of the intriguing features of the anomaly diagrams is that the poles are part of the

anomaly amplitude only under some special kinematical conditions. For instance, the

π → γγ (pion pole) amplitude interpolates between the axial vector current (JA) and two

vector currents (JV ) and saturates the anomaly contribution (if we neglect the pion mass)

given by the 〈JAJV JV 〉 perturbative correlator. This saturation is at the basis of ’t Hooft’s

matching conditions, according to which the anomaly of the fermions should be reproduced

by a composite particle (a pseudoscalar) in a confining theory (see also the discussion in [5]).

In general, the pole appears by solving the anomalous Ward identity for the corresponding

amplitude, ∆λµν(k1, k2) (we use momenta as in figure 1 with k = k1 + k2)

kλ∆λµν(k1, k2) = anǫ
µναβ k1α k2β (2.1)

rather trivially, using the longitudinal tensor structure

∆λµν ≡ wL = an
kλ

k2
ǫµναβ k1α k2β , (2.2)

where an = −i/2π2 denotes the anomaly. The presence of this tensor structure with a 1/k2

behaviour is the signature of the anomaly. This result holds for an AV V graph, but can

be trivially generalized to more general anomaly graphs, such as AAA graphs, by adding

poles in the invariants of the remaining lines, i.e. 1/k2
1 and 1/k2

2 , by imposing an equal

distribution of the anomaly on the three axial-vector legs of the graph.

Obviously, in the chiral limit, the triangle amplitude and the pole amplitude coincide

only if the two photons are on-shell. In fact, as shown by Dolgov and Zakharov [10], the

pole dominance requires a special kinematics. For this reason, the pole has a nonvanishing

residue only for massless photons. This, in fact, sets a limit on the validity of the matching,

since the perturbative correlator and the pole amplitude are not supposed to coincide for

any virtuality of the photons.

2.1 UV completions and decoupled poles in the IR

Being the anomaly closely related to the presence of a pole in the correlation function, the

subtraction of the anomaly pole from the perturbative amplitude is sufficient to restore the

Ward identities of the theory. For this to occur one has to show that the correlator has

always an anomaly pole, which is not obvious. The main goal of this study is to show that

the correlator responsible for the chiral gauge anomaly is always (i.e. under any kinematical

conditions) characterized by the presence of a pole, and to provide an interpretation of this.

We recall that anomaly poles have been identified via an analysis in the IR which

shows that the anomalous correlator has indeed a pole characterized by a nonvanishing

residue. In fact, the IR coupling of the pole present in the correlator is, for a standard IR

pole, rather obvious since the limit

lim
k2→0

k2 ∆λµν = kλ an ǫ
µναβ k1α k2β (2.3)

– 3 –
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Figure 1. Triangle diagram with an axial-vector current (λ) and two vector currents (µ, ν). The

momentum parameterization for the direct and the exchange contribution is written here in an

explicit form for future reference.

allows to attribute to the anomaly amplitude a non-vanishing residue. Our main conclusion

is that anomaly poles should not be searched for only by the usual dispersive analysis, which

is effective only for standard IR poles, but require a complete off-shell evaluation of the

anomalous effective action. We show that these additional poles are decoupled in the IR,

but they nevertheless control the UV behaviour of the theory. This last point is proved

by looking at a special class of amplitudes which are pole dominated in the UV and which

allow to detect the non unitary behaviour of an anomalous theory rather closely.

For this to happen one needs a separation of the anomaly amplitude into longitudinal

and transverse components. Our results are based on direct computations, using the two

parameterizations of the anomaly amplitude mentioned above. We work under the most

general kinematic conditions, generalizing the L/T parameterization given in [11] away

from the chiral limit and showing its exact equivalence to that of Rosenberg.

We start our discussion by addressing the issue of the extraction of an anomaly pole

from the Rosenberg form of the anomaly diagram. We review the identification of the

independent structures of the AVV diagram in this formulation and then move to the L/T

decomposition, illustrating the connection between the two.

2.2 Connecting two parameterizations

In his classic paper Rosenberg provided an expression for the three-point correlator in

terms of a sum of six invariant amplitudes multiplied by different tensorial structures,

denoted by A1, . . . A6. These are given as parametric integrals and are easily computable

only in few cases, for example when the external momenta are on-shell (massless) or with

symmetric off-shell configurations of the two vector lines (k2
1 = k2

2). We will re-analyze

the derivation of the amplitude, emphasizing the features of the vertex in the most general

case, by focusing our attention on the special kinematical limits in which the pole appears.

The AV V amplitude with off-shell external lines shown in figure 1 is therefore written

according to [12] in the form

∆λµν
0 =

i3

(2π)4

∫
d4q

Tr
[
γλγ5(q/ − k/)γν(q/ − k/1)γ

µq/
]

q2 (q − k)2 (q − k1)2
+ exch. (2.4)
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with

∆λµν
0 = A1(k1, k2)ε[k1, µ, ν, λ] +A2(k1, k2)ε[k2, µ, ν, λ] +A3(k1, k2)ε[k1, k2, µ, λ]k1

ν (2.5)

+A4(k1, k2)ε[k1, k2, µ, λ]kν
2 +A5(k1, k2)ε[k1, k2, ν, λ]kµ

1 +A6(k1, k2)ε[k1, k2, ν, λ]kµ
2 .

The four invariant amplitudes Ai for i ≥ 3 are finite and given by explicit parametric

integrals [12]

A3(k1, k2) = −A6(k2, k1) = −16π2I11(k1, k2), (2.6)

A4(k1, k2) = −A5(k2, k1) = 16π2 [I20(k1, k2) − I10(k1, k2)] , (2.7)

where the general massive Ist integral is defined by

Ist(k1, k2) =

∫ 1

0
dw

∫ 1−w

0
dzwszt

[
z(1 − z)k2

1 + w(1 − w)k2
2 + 2wz(k1k2) −m2

]−1
, (2.8)

whose explicit form will be worked out below. Both A1 and A2 are instead represented

by formally divergent integrals, which can be rendered finite only by imposing the Ward

identities on the two vector lines, giving

A1(k1, k2) = k1 · k2A3(k1, k2) + k2
2 A4(k1, k2), (2.9)

A2(k1, k2) = k2
1 A5(k1, k2) + k1 · k2A6(k1, k2), (2.10)

which allow to re-express the formally divergent amplitudes in terms of the convergent ones.

The Bose symmetry on the two vector vertices with indices µ and ν is fulfilled thanks to

the relations

A5(k1, k2) = −A4(k2, k1) (2.11)

A6(k1, k2) = −A3(k2, k1). (2.12)

2.3 Explicit expressions in the massless case

To extract the explicit form of the parametric integrals given by Rosenberg, we proceed

with a direct computation of the invariant amplitudes of the parameterization using di-

mensional reduction. We perform the traces in 4 dimensions and the loop tensor integrals

in D dimensions, using the common techniques of tensor reduction. We use dimensional

regularization with minimal subtraction and find, as expected, the cancellation of the de-

pendence of the result on the renormalization scale. Therefore, the parametric integral I11
and the combinations I20 − I10 are trivially identified at the end of the computation. The

result is expressed in terms of elementary functions, except for the function Φ(x, y) [13],

which is related to one of the two master integrals of the decomposition, the scalar massless
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triangle. We obtain for generic virtualities of the external lines

A1(s, s1, s2) = − i

4π2
+

i

8π2σ

{
Φ(s1, s2)

s1s2 (s2 − s1)

s
+ s1 (s2 − s12) log

[s1
s

]

−s2 (s1 − s12) log
[s2
s

]}
, (2.13)

A3(s, s1, s2) =
i

8π2sσ2

{
− s1s2

[
4s212 + 3 (s1 + s2) s12 + 2s1s2

]
Φ(s1, s2)

−2ss12σ − ss1 [2s1s2 + s12 (3s2 + s12)] log
[s1
s

]

−ss2
[
s212 + s1 (2s2 + 3s12)

]
log

[s2
s

]}
, (2.14)

A4(s, s1, s2) =
i

8π2sσ2

{
s1

[
4s312 + 2 (s1 + 2s2) s

2
12 + 2s1s2s12 + s1 (s1 − s2) s2

]
Φ(s1, s2)

+2ss1σ + s (s1 + s12)
(
2s212 + s1s2

)
log

[s2
s

]

+ss1
[
4s212 − s1 (s2 − 3s12)

]
log

[s1
s

]}
, (2.15)

where s = k2, s1 = k2
1 , s2 = k2

2 , s12 = k1 · k2 with σ = s212 − s1s2 and the function Φ(x, y)

is defined as [13]

Φ(x, y) =
1

λ

{
2[Li2(−ρx) + Li2(−ρy)] + ln

y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
, (2.16)

with

λ(x, y) =
√

∆, ∆ = (1 − x− y)2 − 4xy, (2.17)

ρ(x, y) = 2(1 − x− y + λ)−1, x =
s1
s
, y =

s2
s
. (2.18)

Φ(x, y) can be traced back to the one-loop three-point massless scalar integral C0(s, s1, s2),

as mentioned above, involved in the reduction of the tensor integrals with three denomi-

nators in eq. (2.4) as

C0(s, s1, s2) =
iπ2

s
Φ(x, y). (2.19)

Each term in the function Φ(x, y) and also the arguments of the logarithmic functions

appearing in the form factors Ai (i = 1, . . . , 6) are real if one of these two sets of different

conditions is simultaneously satisfied. In the spacelike region we may have

• s, s1, s2 < 0 and s < −(
√−s1 +

√−s2)2

or in the physical region with positive kinematical invariants

• s, s1, s2 > 0 and s > (
√
s1 +

√
s2)

2.

– 6 –
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ε[k1, λ, µ, ν] ε[k1, k2, µ, λ] kν
1 ε[k1, k2, ν, λ] kµ

1 ε[k1, k2, µ, ν] k
λ
1

ε[k2, λ, µ, ν] ε[k1, k2, µ, λ] kν
2 ε[k1, k2, ν, λ] kµ

2 ε[k1, k2, µ, ν] k
λ
2

Table 1. The eight pseudotensors in which a general amplitude ∆λµν(k1, k2) can be expanded.

η1 ε[k1, k2, µ, ν] k
λ
1

η2 ε[k1, k2, µ, ν] k
λ
2

η3 k1 · k2ε[k1, λ, µ, ν] + kν
1ε[k1, k2, µ, λ]

η4 k2 · k2ε[k1, λ, µ, ν] + kν
2ε[k1, k2, µ, λ]

η5 k1 · k1ε[k2, λ, µ, ν] + kµ
1 ε[k1, k2, ν, λ]

η6 k1 · k2ε[k2, λ, µ, ν] + kµ
2 ε[k1, k2, ν, λ]

Table 2. The six pseudotensors needed in the expansion of an amplitude ∆λµν(k1, k2) satisfying

the vector current conservation.

All the other regions would require some specific analytic continuations by giving to all

the invariants a small imaginary part η (η > 0) according to the iη prescription with

si → si + iη.

When discussing the presence of spurious poles for s → 0 we need to work with

amplitudes which are well-defined around s = 0; for this reason the analytic regularizations

have been always performed before taking the s → 0 limit. There is another important

observation that is in order at this point. One may worry if the absence of the pole in s

can be attributed to the redundancy of the Rosenberg representation, but, as we are going

to show next, this is not the case.

2.4 Four amplitude decomposition in Rosenberg

In order to derive a set of a minimal number of independent invariant amplitudes we

proceed from scratch. The identification of the invariant tensor structures characterizing

the amplitude can be done exhaustively, by starting with the construction of all the possible

tensors of rank three built out of the ε-tensor and the external momenta. We follow here

an approach similar to [5] with some minor changes.

The eight tensorial structures listed in table 1 are the ones needed in the expansion of

a generic triangle correlator with three indices {λ, µ, ν} and external momenta {k1, k2}.
Out of these 8 structures, only the six in the first three columns appear in the Rosenberg

formulation and can be reduced to 4 with little effort by requiring conservation of the vector

currents. If we impose the vector Ward identity on the two vector lines of the diagram

and fix the divergent coefficients A1 and A2 in terms of the remaining amplitudes, then

the form factors Ai reduce to the four ones A3, . . . , A6 and the tensor structures in front of

them get automatically organized in terms of four linear combinations indicated with ηi.

These four tensor amplitudes ηi are selected from a set of six quantities defined in table 2,

which shows all the possible tensors entering into the expansion of a generic three-currents

correlator after imposing the conservation of the vector current.

– 7 –
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Coming back to our specific case, we obtain for the generic anomalous AV V vertex

satisfying the vector Ward identities the parameterization

∆λµν
WI =A3(k1 · k2ε[k1, λ, µ, ν]+k

ν
1 ε[k1, k2, µ, λ])+A4(k2 · k2ε[k1, λ, µ, ν]+k

ν
2ε[k1, k2, µ, λ])

+A5(k1 · k1ε[k2, λ, µ, ν]+k
µ
1 ε[k1, k2, ν, λ])+A6(k1 · k2ε[k2, λ, µ, ν]+k

µ
2 ε[k1, k2, ν, λ])

= A3 η
λµν
3 (k1, k2)+A4 η

λµν
4 (k1, k2)+A5 η

λµν
5 (k1, k2)+A6 η

λµν
6 (k1, k2). (2.20)

This is obtained after plugging eqs. (2.9), (2.10) into eq. (2.5), where ηλµν
i (k1, k2) can be

read from table 2. The remaining two homogeneous pseudotensors of degree 3 in k1, k2,

denoted by ηλµν
1 and ηλµν

2

ηλµν
1 (k1, k2) = kλ

1 ε[k1, k2, µ, ν], ηλµν
2 (k1, k2) = kλ

2 ε[k1, k2, µ, ν], (2.21)

are not present in the Rosenberg parameterization, although they appear in the L/T de-

composition, as we show below. The reduction of these two tensors to the four ones already

used as a basis can be achieved by the use of two Schouten relations

kλ
1 ε[k1, k2, µ, ν] = kµ

1 ε[k1, k2, λ, ν] − kν
1ε[k1, k2, λ, µ] − k2

1ε[k2, λ, µ, ν] + k1 · k2ε[k1, λ, µ, ν],

(2.22)

kλ
2 ε[k1, k2, µ, ν] = kµ

2 ε[k1, k2, λ, ν] − kν
2ε[k1, k2, λ, µ] − k1 · k2ε[k2, λ, µ, ν] + k2

2ε[k1, λ, µ, ν],

(2.23)

or equivalently,

ηλµν
1 (k1, k2) = ηλµν

3 (k1, k2) − ηλµν
5 (k1, k2), (2.24)

ηλµν
2 (k1, k2) = ηλµν

4 (k1, k2) − ηλµν
6 (k1, k2). (2.25)

The set of the 4 amplitudes that we have chosen in the parameterization shown in eq. (2.20)

are linearly independent and functionally independent respect to the Schouten transforma-

tions. The claim that one can make is that any tensor structure which is not of the form

given in the 4-basis above can be re-expressed as a combination of these 4 structures using

appropriate Schouten relations. The decomposition of the AVV diagram with respect to

this basis is therefore unique. At this point it is trivial to realize that, starting from the

explicit expressions of the invariant amplitudes Ai that we have given above, the absence

of a residue at s = 0 continues to hold (for general off-shell kinematics). The important

point to observe is that there is no kinematical singularity in this limit in each of the 4

independent tensor structures. The conclusion is that, in general, an AVV diagram has

no massless poles. The use of a set of non-redundant amplitudes clears the ground of

any doubt concerning this result. In fact, the poles appear only under special kinematical

configurations, as we are going to discuss next.

3 The massive off-shell case for the Rosenberg parameterization

Before performing the relevant kinematical limits on the amplitude, we move one step

forward and generalize the results presented in the previous section to the massive case,

– 8 –
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by writing the expression of the invariant amplitudes given by Rosenberg (and the corre-

sponding parametric integrals) in an explicit form.

The computation is performed as in the massless case, using dimensional reduction.

The modifications are minimal and mostly due to the new scalar integrals B0 and C0,

corresponding to the massive (scalar) self-energy and triangle diagram respectively. The

three-point amplitude with equal massive internal lines is given by

∆λµν =
i3

(2π)4

∫
d4q

Tr
[
γλγ5(q/ − k/ +m)γν(q/ − k/1 +m)γµ(q/ +m)

]

(q2 −m2) ((q − k)2 −m2) ((q − k1)2 −m2)
+ exch., (3.1)

with k = k1 + k2, and can be again cast into the form

∆λµν = A1(k1, k2,m
2) ε[k1, µ, ν, λ] +A2(k1, k2,m

2) ε[k2, µ, ν, λ]

+A3(k1, k2,m
2) ε[k1, k2, µ, λ] k1

ν +A4(k1, k2,m
2) ε[k1, k2, µ, λ] kν

2

+A5(k1, k2,m
2) ε[k1, k2, ν, λ] kµ

1 +A6(k1, k2,m
2) ε[k1, k2, ν, λ] kµ

2 , (3.2)

where the tensorial structures are the same as before and the massive form factors

Ai(k1, k2,m
2) show an explicit dependence on the internal mass. They have been com-

puted by using the tensor reduction technique to express the tensorial one-loop integrals

in terms of the scalar ones. We obtain

A1(k1, k2,m
2) = − i

4π2
+

1

8π4σ

{
s1 (s2 − s12)D1

(
s1, s,m

2
)
− s2 (s1 − s12)D2

(
s2, s,m

2
)

+
[
s1s2 (s2 − s1) − 4σm2

]
C0

(
s1, s2, s,m

2
) }

, (3.3)

A3(k1, k2,m
2) = − i

4π2σ
s12 +

1

8π4σ2

{
− s1 [2s1s2 + s12 (3s2 + s12)] D1

(
s1, s,m

2
)

−s2 [2s1s2 + s12 (3s1 + s12)] D2

(
s2, s,m

2
)

(3.4)

−
[
4s12σm

2 + s1s2
(
4s212 + 3 (s1 + s2) s12 + 2s1s2

)]
C0

(
s1, s2, s,m

2
) }

,

A5(k1, k2,m
2) = − i

4π2σ
s2 +

1

8π4σ2

{
− (s2 + s12)

(
2s212 + s1s2

)
D1

(
s1, s,m

2
)

−s2 [s12 (3s2 + 4s12) − s1s2] D2

(
s2, s,m

2
)

−
[
4s2σm

2 + s2
(
− s2s

2
1 +

(
s22 + 2s12s2 + 4s212

)
s1

+2s212 (s2 + 2s12)
)]
C0

(
s1, s2, s,m

2
) }

, (3.5)

with s = k2, s1 = k2
1, s2 = k2

2 , σ = s212 − s1s2. It is possible to check that the Bose

symmetry relative to the two vector vertices

A2(k1, k2,m
2) = −A1(k2, k1,m

2), (3.6)

A6(k1, k2,m
2) = −A3(k2, k1,m

2), (3.7)

A4(k1, k2,m
2) = −A5(k2, k1,m

2) (3.8)

is respected. As mentioned above, the difference between the massless and the massive

decomposition of the triangle amplitude lies in the particular set of scalar integrals involved
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in the tensor reduction. Here we define D1 and D2 as a combination of two-point scalar

massive integrals (B0) of different internal momenta

Di(s, si,m
2) = B0(k

2,m2) −B0(k
2
i ,m

2) = iπ2

[
ai log

ai + 1

ai − 1
− a3 log

a3 + 1

a3 − 1

]
i = 1, 2

(3.9)

in which the dependence on the regularization scheme disappears in the difference of the

two scalar self-energies involved in (3.9). The expression of C0 can be given explicitly in

various forms [14], for instance as

C0(s, s1, s2,m
2) = −iπ2 1

2
√
σ

3∑

i=1

[
Li2

bi − 1

ai + bi
− Li2

−bi − 1

ai − bi
+ Li2

−bi + 1

ai − bi
− Li2

bi + 1

ai + bi

]

(3.10)

with

ai =

√

1 − 4m2

si
, bi =

−si + sj + sk

2σ
, (3.11)

where s3 = s and in the last equation i = 1, 2, 3 and j, k 6= i. Other expressions, suitable

for numerical implementations, are given in [15]. The region in which all these functions

have real arguments and do not need any analytic continuations are those discussed in

section 2.3, for the massless case. In general, the prescription for iη in the presence of a

mass in the internal loop - in the fermion propagator - is taken as m → m− iη. We have

checked numerically the agreement between the expressions presented above and those

given in parametric form.

4 The vertex in the longitudinal/transverse (L/T) formulation and com-

parisons

The second parameterization of the three-point correlator function that we are going to

discuss is the one presented in [11]. One of the features of this parameterization is the

presence of a longitudinal contribution for generic virtualities of the external momenta and

not just in the specific configuration under which it appears in Rosenberg’s formulation. Of

course, the true presence of the pole in the IR has to be checked by taking the corresponding

limit, since the Schouten relations allow the extraction of a pole in the IR region at the

cost of extra singularities in the parameterization. For this reason we start by recalling the

structure of the L/T parameterization, which separates the longitudinal from the transverse

components of the anomaly vertex, which is given by

W λµν =
1

8π2

[
WL λµν − W T λµν

]
, (4.1)

where the longitudinal component

WLλµν = wL k
λε[µ, ν, k1, k2] (4.2)
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(with wL = −4i/s) describes the anomaly pole, while the transverse contributions take

the form

W T
λµν(k1, k2) = w

(+)
T

(
k2, k2

1 , k
2
2

)
t
(+)
λµν(k1, k2) + w

(−)
T

(
k2, k2

1 , k
2
2

)
t
(−)
λµν(k1, k2)

+ w̃
(−)
T

(
k2, k2

1 , k
2
2

)
t̃
(−)
λµν(k1, k2), (4.3)

with the transverse tensors given by

t
(+)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] − k2µ ε[ν, λ, k1, k2] − (k1 · k2) ε[µ, ν, λ, (k1 − k2)]

+
k2
1 + k2

2 − k2

k2
kλ ε[µ, ν, k1, k2] ,

t
(−)
λµν(k1, k2) =

[
(k1 − k2)λ − k2

1 − k2
2

k2
kλ

]
ε[µ, ν, k1, k2]

t̃
(−)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] + k2µ ε[ν, λ, k1, k2] − (k1 · k2) ε[µ, ν, λ, k]. (4.4)

The form factors wT (s, s1, s2) are all defined in the following eqs. (4.14)–(4.16).

Notice that in this representation the presence of massless poles is explicit for any

kinematical configuration and not just in the massless collinear limit, where the diagram

takes the Dolgov-Zakharov form. A second observation concerns the presence of other

pole-like singularities in the transverse invariant amplitude and tensor structures. It is

then obvious that one has to wonder whether the pole present in wL is balanced, away

from the collinear region, by other contributions which are also singular. Indeed, as we are

going to show, this is the case. In fact, due to the Schouten relations, we are always allowed

to introduce new polar amplitudes and balance them with additional contributions on the

remaining tensor structures. In fact we are going to show that the presence of such pole

away from the collinear region becomes significant in the UV — at least in the perturbative

approach — but not in the IR, since it decouples if one computes the residue correctly in

this representation.

4.1 Generalizing the L/T parameterization to massive fermions and the

anomaly pole

We can generalize the L/T formulation presented above to the case of a triangle amplitude

with a massive fermion of mass m, by simply exploiting the connection between this and

the Rosenberg representation. We use the Schouten relations to show the equivalence

between the tensor structures of both representations. This requires some care since the

decomposition into L and T amplitudes requires a nonzero k, otherwise it is invalid.

At nonzero momentum, by equating the coefficients of the four invariant tensors, we

obtain a linear system of four equations whose solutions return the complete matching

between the two parameterizations in the form

A3(k1, k2) =
1

8π2

[
wL − w̃

(−)
T − k2

(k1 + k2)2
w

(+)
T − 2

k1 · k2 − k2
2

k2
w

(−)
T

]
, (4.5)

A4(k1, k2) =
1

8π2

[
wL + 2

k1 · k2

k2
w

(+)
T − 2

k1 · k2 + k2
2

k2
w

(−)
T

]
, (4.6)

A5(k1, k2) = −A4(k2, k1), A6(k1, k2) = −A3(k2, k1), (4.7)
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and viceversa

wL(k2, k2
1 , k

2
2) =

8π2

k2
[A1 −A2] , (4.8)

(we omit, for simplicity, the momentum dependence) or, after the imposition of the Ward

identities in eqs. (2.9), (2.10),

wL(k2, k2
1, k

2
2) =

8π2

k2

[
(A3 −A6)k1 · k2 +A4 k

2
2 −A5 k

2
1

]
, (4.9)

w
(+)
T (k2, k2

1, k
2
2) = −4π2 (A3 −A4 +A5 −A6) , (4.10)

w
(−)
T (k2, k2

1, k
2
2) = 4π2 (A4 +A5) , (4.11)

w̃
(−)
T (k2, k2

1, k
2
2) = −4π2 (A3 +A4 +A5 +A6) , (4.12)

where Ai ≡ Ai(k1, k2). This same mapping holds also in the massive fermion case if Ai ≡
Ai(k1, k2,m) and leads us to the same decomposition. In this case the L/T parameterization

can be obtained starting from the massive Ai coefficients shown in eq. (3.3)–(3.5) and

exploiting the mapping in eqs. (4.9)–(4.12) between the two parameterizations. We obtain

wL(s1, s2, s) = −4i

s
(4.13)

w
(+)
T (s1, s2, s) = i

s

σ
+

i

2σ2

[
(s12 + s2)(3s

2
1 + s1(6s12 + s2) + 2s212) log

s1
s

+(s12 + s1)(3s
2
2 + s2(6s12 + s1) + 2s212) log

s2
s

+s(2s12(s1 + s2) + s1s2(s1 + s2 + 6s12))Φ(s1, s2)

]
(4.14)

w
(−)
T (s1, s2, s) = i

s1 − s2
σ

+
i

2σ2

[
− (2(s2 + s12)s

2
12 − s1s12(3s1 + 4s12)

+s1s2(s1 + s2 + s12)) log
s1
s

+ (2(s1 + s12)s
2
12 − s2s12(3s2 + 4s12)

+s1s2(s1 + s2 + s12)) log
s2
s

+ s(s1 − s2)(s1s2 + 2s212)Φ(s1, s2)

]
(4.15)

w̃
(−)
T (s1, s2, s) = −w(−)

T (s1, s2, s) (4.16)

in the massless case, which is in complete agreement with the explicit expression given

by [16], while in the massive case the same mapping gives

wL(s, s1, s2,m
2) =−4i

s
− 8m2

π2s
C0(s, s1, s2,m

2) (4.17)

w
(+)
T (s, s1, s2,m

2) = i
s

σ
+

1

2π2σ2

[
(s12+s2)(3s

2
1+s1(6s12+s2) + 2s212)D1(s, s1,m

2)

+(s12+s1)(3s
2
2+s2(6s12+s1) + 2s212)D2(s, s2,m

2) (4.18)

+(4m2sσ+s(2s12(s1 + s2)+s1s2(s1+s2+6s12)))C0(s, s1, s2,m
2)

]
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w
(−)
T (s, s1, s2,m

2) = i
s1−s2
σ

+
1

2π2σ2

[
− (2(s2+s12)s

2
12−s1s12(3s1+4s12)

+s1s2(s1+s2+s12))D1(s, s1,m
2)+(2(s1+s12)s

2
12−s2s12(3s2+4s12)

+s1s2(s1+s2+s12))D2(s, s2,m
2)

+(4m2σ(s1 − s2)+s(s1−s2)(s1s2+2s212))C0(s, s1, s2,m
2)

]
(4.19)

w̃
(−)
T (s, s1, s2,m

2) =−w(−)
T (s, s1, s2,m

2), (4.20)

with si = k2
i (i = 1, 2, 3, k3 = k), s12 = k1 · k2, σ = s212 − s1s2. The functions Di and

C0, defined in eq. (3.9) and (3.10), are respectively a combination of two scalar bubbles

and the scalar one-loop triangle. The Bose symmetry on the vector vertices is fulfilled in

both representations by taking into account the way in which the Ai and the wL, wT , . . .

transform under the exchange of k1, k2 and µ, ν. For the L/T invariant amplitudes we have

w
(+)
T (k2, k2

1 , k
2
2) = w

(+)
T (k2, k2

1 , k
2
2), (4.21)

w
(−)
T (k2, k2

1 , k
2
2) = −w(−)

T (k2, k2
1 , k

2
2), (4.22)

w̃
(−)
T (k2, k2

1 , k
2
2) = −w̃(−)

T (k2, k2
1 , k

2
2). (4.23)

It is then obvious that there is complete equivalence between the two parameterizations,

although there are some puzzling features that need to be investigated more closely. As

we have already mentioned, the L/T parameterization appears to have a pole at s =

(k1 +k2)
2 = 0, which contributes to the anomaly. In fact, the non-vanishing Ward identity

on the axial-vector line is due to the invariant amplitude wL and to its corresponding

tensor structure. Then, one obvious question to ask is if this pole is compatible with

the pole structure of the Rosenberg representation. The answer is affirmative as far as

the computation of the residue is performed on the entire amplitude and not just on

the invariant amplitudes alone. In fact, the L/T decomposition introduces kinematical

singularities both in the longitudinal and in the transverse components as a price for the

appearance of a longitudinal pole. This can be shown explicitly. In fact, a direct evaluation

of the limit (for off shell photons) gives

lim
s→0

swL(k2
1 , k

2
2 , k

2)(k1 + k2)λε[µ, ν, k1, k2] = −4i(k1 + k2)λε[µ, ν, k1, k2], (4.24)

lim
s→0

sw
(+)
T (k2

1 , k
2
2 , k

2) t
(+)
µνλ(k1, k2) = −

2i(s1 + s2) log[s1

s2
]

s1 − s2
(k1 + k2)λε[µ, ν, k1, k2], (4.25)

lim
s→0

sw
(−)
T (k2

1 , k
2
2 , k

2) t
(−)
µνλ(k1, k2) =

[
−4i+

2i(s1 + s2) log(s1

s2
)

s1 − s2

]
(k1 + k2)λε[µ, ν, k1, k2],

(4.26)

lim
s→0

s w̃
(−)
T (k2

1 , k
2
2 , k

2) t̃
(−)
µνλ(k1, k2) = 0 (4.27)

for the several singular terms present at s = 0. These results have been obtained after

performing the analytic continuation around s = 0 of the explicit expressions for wL and

wT given above. Combining these partial contributions we obtain the total result for the
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residue of the entire amplitude

lim
s→0

sWµνλ = 0, (4.28)

which proves its vanishing at s = 0 for off-shell photon lines. This result, in agreement

with what we had anticipated, shows that in the IR also the L/T parameterization has

no pole. This is expected, being the L/T and the Rosenberg parameterizations equivalent

descriptions of the same diagram (modulo some Schouten relations), hence it is obvious

that the decoupling of the anomaly pole for off-shell external momenta has to take place

in both parameterizations. Performing cautiously the limits, we can similarly proof that

the pole reappears in correspondence of specific configurations of the external lines (on-

shell photons), as we are going to show next. An equivalent analysis, of course, can be

performed by analyzing the various cuts of the amplitudes in the L/T parameterization

using a dispersive approach and looking for discontinuities proportional to δ(k2) in the

spectral density of the diagram.

5 Special kinematical limits in the massless case

We summarize in this section all the results concerning some specific kinematical conditions

in the infrared and chiral limits of the anomaly amplitude, taken directly on the amplitude

given in the previous sections.

The first analysis carried out involves the massless Ai written in eq. (2.13), (2.15)

for which we take three limits. We use the notation Ai(s, s1, s2) to denote each invari-

ant amplitude in the Rosenberg form for massless internal fermions. We distinguish the

following cases

a) s1 = 0 s2 6= 0 s 6= 0 m = 0

b) s1 = 0 s2 = 0 s 6= 0 m = 0

c) s1 = M2 s2 = M2 s 6= 0 m = 0.

While cases a) and b) will be treated here, case c) will be left to the appendix A, together

with the same three kinematical configurations for a massive fermion. In case a) we find

A1(s, 0, s2) =
i

4π2

[
s2

s− s2
log

s2
s

− 1

]
, (5.1)

A2(s, 0, s2) =
i

4π2

[
s2

s− s2
log

s2
s

+ 1

]
, (5.2)

A3(s, 0, s2) = −A6(0, s2, s, 0) = − i

2π2(s− s2)

[
s2

s− s2
log

s2
s

+ 1

]
, (5.3)

A4(s, 0, s2) =
i

2π2(s− s2)
log

s2
s

(5.4)

and a divergent A5(s, 0, s2) which does not contribute to the physical value of the amplitude.

Indeed ∆λµν , in a physical amplitude, is contracted with the polarization vector relative

to the on-shell photon with momentum k1, giving ǫµ(k1)k
µ
1 = 0, so that the contribution

coming from A5 disappears.
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Notice that this amplitude satisfies the Ward identities in eqs. (2.9), (2.10) and can be

written as

∆λµν(s, 0, s2)=A3(s, 0, s2) η
λµν
3 (k1, k2)+A4(s, 0, s2)η

λµν
4 (k1, k2)+A6(s, 0, s2)η

λµν
6 (k1, k2),

(5.5)

with the tensors ηi(k1, k2) written in table 2. Notice that the poles are located at the

various thresholds of the amplitude, describing the production of a photon of invariant

mass s2, having set the first photon on-shell, and that all the residues are vanishing

lim
s→0

sA3(s, 0, s2) = lim
s→0

sA4(s, 0, s2) = lim
s→0

sA6(s, 0, s2) = 0, (5.6)

including the one of the whole amplitude

lim
s→0

s∆λµν(s, 0, s2) = 0. (5.7)

In the L/T parameterization we find

wL(s, 0, s2) = −4i

s
, (5.8)

w
(+)
T (s, 0, s2) =

2i

s− s2

[
s+ s2
s− s2

log
s2
s

+ 2

]
, (5.9)

w
(−)
T (s, 0, s2) = −w̃(−)

T (s, 0, s2) =
2i

s− s2
log

s2
s

(5.10)

which also show the presence of the same threshold singularity, but, in addition, also of

an anomaly pole in wL which is absent in Rosenberg’s parameterization. As we have

commented above, the pole is spurious, since the tensor structures are also singular in the

same (s→ 0) limit, and there is a trivial cancellation of this contribution. Indeed we find

lim
s→0

swL(s, 0, s2)kλε[µ, ν, k1, k2] = −4ikλε[µ, ν, k1, k2], (5.11)

lim
s→0

s
[
w

(+)
T (s, 0, s2)t

(+)
λµν(k1, k2)+w

(−)
T (k2

1 , k
2
2 , k

2)t
(−)
λµν(k1, k2)

]
=−4ikλε[µ, ν, k1, k2], (5.12)

lim
s→0

s w̃
(−)
T (s, 0, s2) t̃

(−)
λµν(k1, k2) = 0 (5.13)

which gives

lim
s→0

sWλµν(s, 0, s2) =
1

8π2
lim
s→0

s
[
WLλµν − W T λµν

]
= 0 (5.14)

in agreement with eq. (4.28).

Therefore, in this case, with only one leg on-shell, the kinematics does not allow a

polar structure for the entire amplitude; in the Rosenberg parameterization this result can

be derived in a straightforward way since each amplitude has a vanishing residue and the

tensor structures are regular in the IR (i.e. s → 0) limit. On the contrary, in this limit

the L/T formulation involves both the longitudinal and the transverse components, as the

tensorial structures multiplying the coefficients w(s, 0, s2) are not independent as s → 0.
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Obviously the final result, obtained with the correct limiting procedure, is the same in

both cases.

Let’s take in exam another kinematical configuration, more specific than the previous

one, i.e. the case in which the two photons are both on-shell and massless or

b) s1 = s2 = 0 s 6= 0 m = 0.

In this case it is well known that the AV V vertex exhibits a polar structure, as Dolgov

and Zakharov showed in [10], therefore we expect to recover this amplitude in the s → 0

limit. The computed form factors are extremely simple. We obtain

A1(s, 0, 0) = −A2(s, 0, 0) = − i

4π2
, (5.15)

A3(s, 0, 0) = −A6(s, 0, 0) = − i

2π2s
(5.16)

which clearly exhibit the Bose symmetry for the two vector vertices, since s1 = s2. Notice

that A4, A5 are physically nonessential, as before; indeed they are multiplied, respectively,

by kν
2 and kµ

1 in the total amplitude ∆λµν(k1, k2), and vanish after their contraction with

the physical polarization vectors of the photons.

The amplitude ∆λµν(k1, k2) satisfies the Ward identities written in eq. (2.9), since

s12 → s/2 when both photons are on-shell

A1(s, 0, 0) =
s

2
A3(s, 0, 0), A2(s, 0, 0) =

s

2
A6(s, 0, 0). (5.17)

In this case the entire correlator is obtained from only two form factors Ai (A3 and

A6), giving

∆λµν(s, 0, 0) = A3(s, 0, 0) η
λµν
3 (k1, k2) +A6(s, 0, 0) η

λµν
6 (k1, k2) (5.18)

=
i

2π2s

[
kµ
2 ε[k1, k2, ν, λ ] − kν

1ε[k1, k2, µ, λ]

]
− i

4π2
ε[(k1 − k2), λ, µ, ν].

This expression can be reduced to its polar Dolgov-Zakharov form after using the Schouten

identities in eqs. (2.22), (2.23)

∆λµν(s, 0, 0) = − i

2π2

kλ

s
ε[k1, k2, µ, ν] (5.19)

as s1 = s2 = 0.

In the L/T parameterization we expect a similar polar result, after summing over the

contributions coming both from the longitudinal and transverse tensors. In this case, the

only two non-vanishing coefficients are wL and w
(+)
T

wL(s, 0, 0) = w
(+)
T (s, 0, 0) = −4i

s
, (5.20)

w
(−)
T (s, 0, 0) = w̃

(−)
T (s, 0, 0) = 0 (5.21)

and the residues must be computed combining them with the corresponding tensor struc-

tures. It is worth noticing that t
(+)
λµν(k1, k2) = 0 for s1 = s2 = 0. This can be immediately
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checked starting from its definition given in eq. (4.3) and with the aid of the two Schouten

identities shown in eqs. (2.22), (2.23), which in this case become

kλ
1 ε[k1, k2, µ, ν] = −kν

1ε[k1, k2, λ, µ] +
s

2
ε[k1, λ, µ, ν], (5.22)

kλ
2 ε[k1, k2, µ, ν] = kµ

2 ε[k1, k2, λ, ν] −
s

2
ε[k2, λ, µ, ν], (5.23)

so that the unique contribution to the residue for s→ 0 comes from the longitudinal part

lim
s→0

sWµνλ(s, 0, 0) =
1

8π2
lim
s→0

s WLλµν

=
1

8π2
lim
s→0

swL(s, 0, 0) kλε[µ, ν, k1, k2]

= − i

2π2
kλ ε[k1, k2, µ, ν]. (5.24)

We conclude that the pole is indeed present in the L/T amplitude if the conditions s1 =

s2 = 0 with s 6= 0 are simultaneously satisfied

∆λµν(s, 0, 0) = Wµνλ(s, 0, 0) = − i

2π2

kλ

s
ε[k1, k2, µ, ν]. (5.25)

Another interesting case is represented by a symmetric kinematical configuration in

which the external particles are massive gauge bosons of mass M . This will turn useful

in the next sections, when we will discuss the behaviour of a BIM amplitude with massive

external lines at high energy, showing, also in this case, its pole dominance. There are some

conclusions that we can draw from this study which are important for the analysis of the

next sections. Notice that in all the cases that we have discussed it is possible to isolate a

1/s contribution in wL for any kinematical configurations other than the massless (s→ 0)

one, where the L/T formulation requires a limiting procedure. This is clearly suggestive of

the fact that a longitudinal component is intrinsically part of the vertex and not just of its

collinear and chiral limit. This contribution is paralleled, in the Rosenberg amplitude(s)

by a constant behaviour of A1 and A2 (A1 = i/(4π2) + . . .). Massive external gauge lines

or mass corrections due to the fermion mass in the loop do not shift this 1/s pole.

As we have mentioned, under the general configurations contemplated in these last

cases, these poles are not coupled in the IR, although this does not necessarily exclude

a possible role played by these contributions in the IR region. However, the complete

absence of a scale in their definition makes them suitable also of a completely different

interpretation, as longitudinal contributions that survive in the asymptotic s→ ∞ limit of

these amplitudes. In fact, we are going to show that any UV completion of these theories

has necessarily to deal with the cancellation of these terms.

6 Pole dominated amplitudes: the UV significance of the general

anomaly poles

The UV significance of the poles appearing in the off-shell correlator can be established

by studying a class of amplitudes that are pole-dominated at high energy, and which
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k1

B

A

A A

A

p1

k

p2k2

A A

A A

Bk1 − p1 B

A

A

A

A

k1 − p2

Figure 2. The scattering process AA → AA via a BIM amplitude in the three channels. The

subscript s, t, u stands for the channel. The exchanged gauge boson B is different from the external

ones and has a mass MB.

are typical of an anomalous theory (see figure 2). These amplitudes describe the elastic

scattering of massive (or massless) gauge bosons mediated by two triangle graphs and give

total cross sections that grow quadratically with energy, thereby violating unitarity. As we

have seen, for on-shell massless external gauge bosons (the A lines) the anomaly vertex is

characterized by a purely longitudinal component since the transverse form factors vanish.

It is therefore obvious to conclude that wL is responsible for the high energy behaviour

of these amplitudes. In this section we are going to show that a similar behaviour is

found in the scattering of massive gauge bosons and that it can be attributed to the same

component wL even though the transverse contributions, coming from the remaining form

factors, are non vanishing. We start from the massless gauge bosons case and consider the

BIM amplitudes for the process AA→ AA depicted in figure 2 for the three channels. The

incoming momenta are kµ
1 , kν

2 in the initial state, while pσ
1 and pτ

2 are those of the final

state. The Mandelstam variables are defined as usual

s = (k1 + k2)
2 = (p1 + p2)

2, (6.1)

t = (k1 − p1)
2 = (k2 − p2)

2, (6.2)

u = (k1 − p2)
2 = (k2 − p1)

2, (6.3)

s+ t+ u = 0, (6.4)

and we denote with θ the angle between the initial and final directions of the two

particles in the center of mass frame. Each triangle reduces to its Dolgov-Zakharov form

as the external lines are all massless and on-shell. Consider, for instance, the scattering

mediated by a massive gauge boson B in the s-channel, which is described by the amplitude

Aµνστ
s = ∆λµν(−k,−k1,−k2)

1

s−M2
B

(
gλρ − kλkρ

M2
B

)
∆ρστ (k, p1, p2) (6.5)

which becomes, after using the Ward identity on the axial-vector current

Aµνστ
s =

an

MB
ε[µ, ν, k1, k2]

1

s

an

MB
ε[σ, τ, p1, p2]. (6.6)
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We perform a complete computation of the BIM amplitudes by combining all the s, t and

u channel exchanges. The amplitude with the exchange of B in the three channels depicted

in figure 2 is given by

Mµνστ
AA→AA = (As + At + Au)µνστ , (6.7)

— where the subscript indicates the channel — and each term is composed by two triangle

correlators and a Proca propagator of the exchanged B gauge boson

Aµνστ
s = ∆µνλ (−k,−k1,−k2)P

λρ(k1 + k2)∆ρστ (k1 + k2, p1, p2), (6.8)

Aµνστ
t = ∆µσλ(−(k1 − p1),−k1, p1)P

λρ(k1 − p1)∆ρτν(k1 − p1, p2,−k2), (6.9)

Aµνστ
u = ∆λµτ (−(k1 − p2),−k1, p2)P

λρ(k1 − p2)∆ρσν(k1 − p2, p1,−k2). (6.10)

In the expressions above, the amplitude ∆ is represented by a triangle correlator with

external massless on-shell lines (k2
1 = k2

2 = p2
1 = p2

2 = 0), which takes its polar (Dolgov-

Zakharov) form

∆λµν(k, k1, k2) = an
kλ

s
ε[k1, k2, µ, ν], an = − i

2π2
, (6.11)

while the generic Proca propagator for the internal gauge boson B with mass MB is

P λρ(k) = − i

k2 −M2
B

[
gλρ − kλkρ

M2
B

]
. (6.12)

After inserting the eqs. (6.11) and (6.12) into eqs. (6.8)–(6.10) we obtain for the single

squared amplitudes and the interferences

|As|2 = 2 â s2 |At|2 = 2 â t2 |Au|2 = 2 â (s+ t)2 (6.13)

AsA∗
t = â s t AsA∗

u = −â s (s+ t) AtA∗
u = −â t (s+ t) (6.14)

with â = |an|4/(8M4
B), and then a short computation yields

|M|2AA→AA(s, θ) =
1

4

∑

spins

|Mµνστ |2

=
|an|4
4M4

B

(s2 + st+ t2) =
|an|4
64

s2

M4
B

(cos2 θ + 3). (6.15)

In eq. (6.15) we have averaged over the initial states. The result depends on the total

anomaly an and on the Stückelberg mass of the exchanged gauge boson MB ; it takes

the form

dσ

dΩ
=

1

2

(
~c

8π

)2 |M|2(s, θ)
s

, (6.16)

which violates the unitarity bound

dσ

dΩ
≤ 1

s
(6.17)
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as s approaches infinity. In an analogous way we deal with the case in which the gauge

bosons A are massive and satisfy on-shell conditions of the form k2
1 = k2

2 = p2
1 = p2

2 = M2.

The process is again the one depicted in figure 2 but the presence of massive external lines

increases notably the length of the computation. The amplitude is neatly separated into

longitudinal (polar) and transverse components. The longitudinal component is controlled

by wL ∼ 1/s, which is multiplied by kinematical factors causing an overall growth of this

component (∼ s2) at large energy, while the transverse part behaves as

w
(+)
T (s) ∼ 4i

s

(
1 + log

M2

s

)
(6.18)

at large s. The transverse component of the squared amplitude has an overall ∼ 1/s2

behaviour in the same limit, and the corresponding amplitude can be correctly interpreted

as due to the exchange of an ordinary massless propagator (∼ 1/s). The threshold for

this s-channel amplitude is at s = 4M2, where it vanishes, while in the non-asymptotic

region its transverse part describes the exchange of an ordinary 1/(s −M2
B) propagator

(times finite residues at each of the two vertices). In fact, the transverse component is

well-behaved at any finite s values and, in particular, for s = M2
B . Notice also that in the

limit s→ 4M2 (when s > 4M2), the function
∣∣∣w(+)

T (s)
∣∣∣
2

does not exhibit poles and it can

be written as

∣∣∣w(+)
T (s)

∣∣∣
2
∼ a1

M4
+ a2

a2s

M6
+
a3s

2

M8
+ . . . , (6.19)

which implies the finiteness of the amplitude at threshold. As we have already mentioned,

the same behaviour is found at any finite value of s. Without enforcing the longitudinal

subtraction, the cross section is unbound and the asymptotic expansion of the squared

amplitude is

|M|2AA→AA(s, θ) ∼ 1

9

[
16

M4
B

(cos θ2 + 3)s2
]
, (6.20)

where the term increasing linearly with s (when inserted in the cross section) is dominated

by the coefficient of |wL|2. Therefore, the subtraction of the longitudinal component of

the complete amplitude is necessary in order restore unitarity, leaving only the transverse

part. The computations are rather lengthy, but the result for the transverse contributions,

which respects unitarity at high energy, is given by the simple expression

|M|2T =
M4

(
s− 4M2

)2 (
t2 + u2

)

2
(
M2

B − s
)2 |w(+)

T (s)|4 +
M4

(
t− 4M2

)2 (
s2 + u2

)

2
(
M2

B − t
)2 |w(+)

T (t)|4

+
M4

(
s2 + t2

) (
u− 4M2

)2

2
(
M2

B − u
)2 |w(+)

T (u)|4

+
M4

2
(
M2

B − s
) (
M2

B − t
)
[
128M8 − 64(s + t)M6 + 8

(
s2 − 3ts + t2

)
M4

+6st(s+ t)M2 + st
(
s2 + 3ts+ t2

) ]
|w(+)

T (s)|2 |w(+)
T (t)|2
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+
M4

2
(
M2

B − s
) (
M2

B − u
)
[
128M8 − 64(s + u)M6 + 8

(
s2 − 3us+ u2

)
M4

+6su(s+ u)M2 + su
(
s2 + 3us + u2

) ]
|w(+)

T (s)|2 |w(+)
T (u)|2

+
M4

2
(
M2

B − t
) (
M2

B − u
)
[
128M8 − 64(t+ u)M6 + 8

(
t2 − 3ut+ u2

)
M4

+6tu(t+ u)M2 + tu
(
t2 + 3ut + u2

) ]
|w(+)

T (t)|2 |w(+)
T (u)|2. (6.21)

Notice that the leading terms for w
(+)
T (t) and w

(+)
T (u) in the asymptotic region are the

same as those contained in w
(+)
T (s). Expressing in terms of s and the scattering angle in

the center of mass frame cos θ all the other invariants

t =

[
2M2 − s

2

]
(1 − cos θ) u =

[
2M2 − s

2

]
(1 + cos θ); (6.22)

eq. (6.21) shows that |M|2T → 0 for s → ∞, which is in agreement with unitarity. At

the same time, the interpretation of the corresponding squared amplitude in terms of an

ordinary bosonic exchange is rather obvious since the purely transverse part shows an

asymptotic behaviour of the form

|M|2T ∼ M4

s2

∑

n=0

Cn(θ,M) logn

(
M2

s

)
(6.23)

with the correctly factorized double pole (∼ 1/s2), and where the coefficients cn(θ,M)

depend only on the mass M of the external lines and on the scattering angle.

To summarize, we have seen that anomaly poles extracted by a complete off-shell

analysis of the correlation function of the anomaly graph have a clear UV significance and

saturate the anomaly. We conclude that the anomaly diagram can always be written in

terms of an anomaly pole plus extra terms which either contribute homogeneously to the

anomalous Ward identity or are responsible for its mass corrections. These two sources

of breaking of the Ward identity have separate origin and appear to be universal. We are

going to use this result to present a form of the effective action which includes these extra

contributions, by discussing several of its expansions using as an expansion parameter the

mass of the fermion in the loop.

7 Effective actions and the gauge anomaly

In this section we are going to discuss the formulation of the effective action in the presence

of anomaly poles, generalizing the Euler-Heisenberg (EH) result to an anomalous theory.

We will focus our attention exclusively on the trilinear gauge terms, coming from the

anomalous structure, which are new compared to the EH formulation.

The simplest example that we can consider is a theory describing a single anomalous

gauge boson B with a lagrangian

LB = ψ (i ∂/ + eB/ γ5)ψ − 1

4
F 2

B . (7.1)
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The effective action of the model suffers from a trilinear gauge interaction which is anoma-

lous (BBB). In this case the anomalous vertex is obtained by a simple symmetrization

of (2.5) which generates a ∆AAA vertex

∆AAA =
1

3
(∆AV V + ∆V AV + ∆V V A) . (7.2)

The anomalous gauge variation (δBµ = ∂µθB)

δΓB =
i e3 an

24

∫
d4x θB(x)FB ∧ FB (7.3)

can be reproduced by the nonlocal action

Γpole =
e3

48π2
〈∂B(x)�−1(x− y)FB(y) ∧ FB(y)〉, (7.4)

which is the variational solution of (7.3). To derive a 1/m expansion of the effective action,

we perform an expansion of the Rosenberg form factors, obtaining

A1(s, 0, 0,m
2) = −A2(s, 0, 0,m

2) =
i

48π2

s

m2
+

i

360π2

s2

m4
+O

(
1

m6

)
, (7.5)

A3(s, 0, 0,m
2) = −A6(s, 0, 0,m

2) =
i

24π2

1

m2
+

i

180π2

s

m4
+O

(
1

m6

)
, (7.6)

A4(s, 0, 0,m
2) = −A5(s, 0, 0,m

2) =
i

12π2

1

m2
+

i

120π2

s

m4
+O

(
1

m6

)
, (7.7)

where s ≡ k2. We will also use the notation s1 and s2 to denote the virtuality of the two

external photons (s1 ≡ k2
1 , s2 ≡ k2

2). Due to the chiral gauge anomaly, the effective action

is gauge-variant. For our choice of momenta (incoming k on the axial-vector of index λ

and outgoing k1 and k2 on the two vector currents of indices µ and ν) we obtain

T λµν
AV V (x, y, z) =

∫
d4k d4k1 d

4k2

(2π)8
δ4(k − k1 − k2) e

ik·z−ik1·x−ik2·y ∆λµν
AV V (k, k1, k2) (7.8)

with the contribution of the anomalous vertex being given by

Γ(3) = − i

6

∫
d4x d4y d4z T λµν(x, y, z)Bλ(z)Bµ(x)Bν(y), (7.9)

where T λµν(x, y, z) is the symmetrized correlator given by

T λµν(x, y, z) =
1

3

[
T λµν

AV V (x, y, z) + T λµν
V AV (x, y, z) + T λµν

V V A(x, y, z)

]
. (7.10)

The explicit form of the new anomalous contributions (the symbols 〈 〉 denote spacetime

integration) can be obtained by plugging in the expression of the various form factors
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expanded in 1/m written in eqs. (7.5)–(7.7). We obtain

Γ(3) = − i

6

[
1

48π2m2
ǫαµνλ (〈�Bλ∂αBµBν〉 − 〈�BλBµ∂αBν〉)

− 1

360π2m4
ǫαµνλ

(
〈�2Bλ∂αBµBν〉 − 〈�2BλBµ∂αBν〉

)

+
1

24π2m2

(
ǫαβµλ〈∂α∂νBµBλ∂βB

ν〉 − ǫαβνλ〈∂αBµBλ∂β∂
µBν〉

)

− 1

180π2m4

(
ǫαβµλ〈∂α∂νBµ�Bλ∂βB

ν〉 − ǫαβνλ〈∂αBµ�Bλ∂β∂
µBν〉

)

+
1

12π2m2

(
ǫαβµλ〈∂αBµ∂β∂νB

νBλ〉 − ǫαβνλ〈∂α∂µB
µBλ∂βBν〉

)

− 1

120π2m4

(
ǫαβµλ〈∂αBµ∂β∂ν�Bλ〉 − ǫαβνλ〈∂α∂µB

µ
�Bλ∂βBν〉

)]
. (7.11)

Naturally, the p/m expansion hides the nonlocal contributions which are present in

the effective action. These can be identified from the off-shell expression of the anomaly

vertex, which in the L/T parameterization takes a close form only in momentum space. For

this reason we rewrite this parameterization as a pole (wL = −4i/s) plus mass corrections

in the equivalent form

WL λµν = (wL −F(k, k1, k2,m)) kλε[µ, ν, k1, k2] (7.12)

F(m, s, s1, s2) =
8m2

π2s
C0(s, s1, s2,m

2), (7.13)

where C0 has been given in eq. (3.10). Obviously, the anomaly is completely given by wL.

The complete action is instead given by

Γ(3) = Γ
(3)
pole + Γ̃(3) (7.14)

with the pole part given by

Γ
(3)
pole = − 1

8π2

∫
d4x d4y ∂ ·B(x)�−1

x,yF (y) ∧ F (y) (7.15)

and the rest (Γ̃(3)) given by a complicated nonlocal expression which contributes homoge-

neously to the Ward identify of the anomaly graph

Γ̃(3) = − e3

48π2

∫
d4x d4y d4z ∂ ·B(z)FB(x) ∧ FB(y)

×
∫
d4k1 d

4k2

(2π)8
e−ik1·(x−z)−ik2·(y−z)F(k, k1, k2,m)

− e3

48π2

∫
d4x d4y d4zBλ(z)Bµ(x)Bν(y)

×
∫
d4k1 d

4k2

(2π)8
e−ik1·(x−z)−ik2·(y−z)W λµν

T (k, k1, k2,m), (7.16)

where k = k1 + k2. A second form of the effective action is obtained by expanding around

m = 0, i.e. for a small mass. A simple, but very instructive case, is the one with two
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on-shell photons (s1 = s2 = 0) and a nonzero fermion mass. We obtain, for instance, in the

AV V case the following expressions for the form factors after the series expansion around

m = 0

wL = −4 i

s
− 4 im2

s2
log

(
− s

m2

)
+O(m3), (7.17)

w
(+)
T (s, 0, 0,m2) =

12 i

s
− 4 i

s
log

(
− s

m2

)
+

4 im2

s2

[
2+log

(
s2

m4

)
−log2

(
− s

m2

)]
+O(m3).

(7.18)

It is clear that this second expansion allows to isolate the pole term from the mass correc-

tions, and is probably a more faithful description of the anomalous content of the theory,

identified by the anomaly pole.

8 Anomaly inflow from 5-D and the breaking of unitarity in the effec-

tive action

The presence of a longitudinal exchange in an anomalous theory — which exhibits a power-

like growth with energy of some of its S-matrix elements — is not a property just of

four dimensional models. As we are going to show, similar features are typical also of

extra dimensional models in which the presence of anomalies on the brane, due to the

delocalization of the chiral fermions, is canceled by an anomaly inflow. In particular, the

presence of anomaly poles in the reduced theory is, in general, a threat to the consistency

of the effective action. For instance, in 5-D models, the basic role of the mechanism

of inflow is to guarantee the gauge invariance of the effective 4-D geometric action (after

compactification), canceling the anomaly of the chiral fermions on the brane. Our analysis,

to be definite, is focused on a model in 5-D which shows a nice realization of the inflow,

formulated in [9], although our conclusions are expected to be model independent. We

are going to show that in the case of anomalous models with an inflow, any effective

theory defined by a restriction on the sum over the KK modes is necessarily going to break

unitarity in the UV because of the presence of pole dominated amplitudes, quite similarly

to our previous analysis in 4-D.

In general, it is well known that models incorporating extra dimensions violate unitarity

both before and after compactification [6–8]. However, this stronger form of breaking

obtained for any fixed number of KK modes included in the expansion, which does not

occur for other (non anomalous) models of this type, finds its origin in the limitation of the

condition of gauge invariance, here guaranteed by an inflow, to establish the full consistency

of the theory. The point that we will be raising is that an inflow has necessarily to remove

the anomaly poles of the effective theory on the brane in order to make it a consistent model.

Notice that this breaking of unitarity that we will discover is completely unrelated to other

unitarity bounds that the theory obviously has for being non-renormalizable. We follow

closely [9], skipping details that can be found in that work, and consider the lagrangian

L(x, y) = − 1

4ẽ2
FMN (x, y)FMN (x, y), (8.1)
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where

FMN (x, y) = ∂MAN (x, y) − ∂NAM (x, y) (8.2)

denotes the 5-D field strength, Lorentz indices in 5-D are denoted with capital Roman

letters, e.g. M,N = 0, 1, 2, 3, 5, while the corresponding greek indices are four dimensional

(µ, ν = 0, 1, 2, 3). We use the notation x ≡ (x0, ~x) and y ≡ x5 to denote the coordinates

of the usual (3 + 1)-dimensional spacetime and the coordinate of the orbifold, respectively.

The nonzero KK modes acquire a typical Stückelberg mass due to the compactification.

One of the possible ways to realize an inflow in this model for the restoration of gauge

invariance is by the introduction in 5-D of a Chern-Simons form (CS)

LCS =
κ

4
εABCDEAAFBCFDE . (8.3)

Integrating over the y dimension we obtain the effective 4-dimensional lagrangian

L(x) =

[
ψ̄(i∂/ + V/ + A/ γ5 −m)ψ +

1

12π2

∑

nmk

cnmkB
n
µB

m
ν F̃

kµν

− 1

4e2
F 0

µνF
0µν − 1

4e′2

∑

n≥1

Fn
µνF

nµν +
∑

n≥1

1

2e2n
M2

nB
n
µB

nµ

]
(8.4)

which describes a massless photon, whose field-strength is denoted by F 0, plus the corre-

sponding Kaluza-Klein (KK) excitations (Fn) - which are massive - and the infinite set

of 4-D Chern-Simons terms. These are characterized by some numerical coefficients cnmk

whose expression can be found in [9]. It is easily found that the 1-loop effective action of

the model contains the infinite set of diagrams

Tl,m,n = 〈J (l)
A J

(m)
A J

(n)
A 〉, (8.5)

where the currents include, besides the vector (J (n)) and axial-vector contributions (J
(n)
A )

coupled to the KK gauge excitations, also the Chern-Simons part. As discussed in [9], by

absorbing a Chern-Simons term in the current (which amounts to induce some shifts in the

A1 and A2 coefficients of Rosenberg, see also the discussion in [17]) we can always bring the

vertex correlator, also in this more general case, to reproduce Bardeen’s result for the axial

vector anomaly, moving all the anomaly of the vertex on the axial part. For this reason, in

the analysis presented below, we will omit any explicit Chern-Simons terms, having these

been absorbed into the definition of the anomaly vertices - expressed in terms of vector

and axial-vector currents rather than of chiral currents - with conserved vector currents.

The breaking of unitarity can be established rigorously by considering a scattering

amplitude which is pole dominated (due to the anomalies localized on the brane), where

we now allow in the various channel the possibility of exchanging a finite number of KK

excitations (NKK). For this purpose we define two functions fN and χN defined as

χNKK
=

NKK∑

odd n

1

M2
n

, (8.6)

fNKK
(s) =

NKK∑

odd n

1

s−M2
n

. (8.7)
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We can consider scatterings involving both massless and massive external gauge bosons in

2-to-2 amplitudes, illustrated in figure 3 for the s-channel case. For simplicity we present be-

low only the computation in the massive case, although similar conclusions can be reached

also in the massless one. We obtain

|As|2 =
1

4

(
s− 4M2

)2
[
s4χ2

N |wL(s)|4 + 2M4
(
t2 + u2

)
fN (s)2 |w(+)

T (s)|4
]
, (8.8)

|At|2 =
1

4

(
t− 4M2

)2
[
t4χ2

N |wL(t)|4 + 2M4
(
s2 + u2

)
fN (t)2 |w(+)

T (t)|4
]
, (8.9)

|Au|2 =
1

4

(
u− 4M2

)2
[
u4χ2

N |wL(u)|4 + 2M4
(
s2 + t2

)
fN (u)2 |w(+)

T (u)|4
]
, (8.10)

AsA∗
t = −1

2
M4u t2 (u− t)χNfN (s) |wL(t)|2 |w(+)

T (s)|2

−1

2
M4u s2 (u− s)χNfN(t) |wL(s)|2 |w(+)

T (t)|2

+
1

4
M4fN(s)fN (t)

[
8
(
2s2 − 7us+ u2

)
M4 + 2s

(
−4s2 + 3us + 9u2

)
M2

+s4 − su3 + 2s3u

]
|w(+)

T (s)|2 |w(+)
T (t)|2

+
1

8
s3t3χ2

N |wL(s)|2 |wL(t)|2, (8.11)

AsA∗
u =

1

2
M4t u2 (u− t)χNfN (s) |wL(u)|2 |w(+)

T (s)|2

+
1

2
M4t s2 (s− t)χNfN (u) |wL(s)|2 |w(+)

T (u)|2

+
1

4
M4fN(s)fN (u)

[
8
(
2s2 − 7st+ t2

)
M4 + 2s

(
−4s2 + 3st+ 9t2

)
M2

+s4 − st3 + 2s3t

]
|w(+)

T (s)|2 |w(+)
T (u)|2

+
1

8
s3u3χ2

N |wL(s)|2 |wL(u)|2, (8.12)

AtA∗
u =

1

2
M4s u2 (u− s)χNfN (t) |wL(u)|2 |w(+)

T (t)|2

+
1

2
M4s t2 (t− s)χNfN (u) |wL(t)|2 |w(+)

T (u)|2

+
1

4
M4 fN(t)fN (u)

[
8
(
2t2 − 7ts+ s2

)
M4 + 2t

(
−4t2 + 3ts+ 9s2

)
M2

+t4 − s3t+ 2st3
]
|w(+)

T (t)|2 |w(+)
T (u)|2

+
1

8
t3u3χ2

N |wL(t)|2 |wL(u)|2. (8.13)

Notice that fNKK
is well-behaved at large energy, due to the presence of a partial sum.

Using the results of the previous section on the asymptotic behaviour of wT , it is easy to

figure out that by removing this component the cross section constructed by summing over

all the squared amplitudes given above respects unitarity in the UV. The conclusions of this

analysis are rather obvious: the appearance of anomaly poles in extra dimensional models,
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A(0) A(0)

B(n)

n

(a)
A(0) A(0)

A(i) A(i)

B(n)

n

(b)
A(i) A(i)

Figure 3. BIM amplitude in the presence of a KK tower of modes exchanged in the s-channel. In

a) the external zero modes A(0) are massless while in b) they have a fixed even KK parity (i) and

vector couplings with the fermions in the loop.

even for a gauge invariant lagrangian whose anomaly on the brane has been cured by the

inflow, implies the presence of additional unitarity bounds on the effective actions of the

induced (4-dimensional) theory on the brane. Therefore its completion requires necessarily

the entire extra-dimensional construct. As we have already remarked above, the breaking

of unitarity induced by the presence of these amplitudes (and poles) is unrelated to other

sources of breaking, attributed in the past to the sum over the KK excitations.

9 Conclusions

The presence of anomaly poles in the perturbative expansion of the effective action, appears

to be an essential property of anomalous theories, even in the most general kinematical

configurations of the anomalous correlators. We have shown that only a complete com-

putation of the effective action allows to identify such contributions, which affect the UV

behaviour of a correlator even if they are decoupled in the IR. The goal of our work has

been to show that more general anomaly poles are present in the perturbative description

of the anomaly. Previously, the appearance of these terms was considered a pure IR phe-

nomenon, while their isolation in the L/T parameterization was probably considered an

artificial result due to the presence of Schouten relations in the anomaly graph. We have

also shown how the Schouten relations can “dissolve” a pole, by allowing its rewriting in

terms of additional form factors which are not of polar form. However, we have shown that

the true meaning of the pole and its irreducibility becomes evident from the UV study of

some amplitudes. These are pole dominated and become harmless at high energy only by

the subtraction of the longitudinal components induced by the presence of these terms. A

similar result holds also for models with extra dimensions when a mechanism of inflow is

invoked to restore gauge invariance of an anomalous theory on the brane.

In our work we have performed a complete and very detailed analysis of all the relevant

regions of the anomaly graph, identifying all the relevant sources of singularities in the

correlator and generalized the L/T parameterization to the massive case. This result has

been used to derive an effective action which generalizes the Euler-Heisenberg result to

anomalous theories. In a companion work we are going to investigate the significance of

anomaly poles in the case of conformal anomaly, showing the perfect (and striking) analogy

with the patterns of anomaly poles discussed in this work.
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A Poles and residui for massive gauge bosons

We are interested in the limit

c) s1 = s2 = M2 s 6= 0 m = 0.

In this case only few simplifications occur in the complete expressions of the amplitudes

Ai since the only surviving symmetry is the one between s1 and s2 and no momentum is

set to zero. The expansion of the three point function is the most general one and the

invariant amplitudes are given by

A1(s,M
2,M2) = − i

4π2
(A.1)

A3(s,M
2,M2) = − 2 iM4

π2s2 (s− 4M2)2
ΦM (s−M2)

− i

2π2s (s− 4M2)2

[
s2 − 6sM2 + 2

(
2M2 + s

)
log

[
M2

s

]
M2 + 8M4

]

(A.2)

A4(s,M
2,M2) =

iM2

π2s2 (s− 4M2)2
ΦM

(
s2 − 3sM2 + 2M4

)

+
i

2π2s (s− 4M2)2

[
2sM2 +

(
s2 − 4M4

)
log

(
M2

s

)
− 8M4

]
, (A.3)

with the functions Φ(x, y) and λ(x, y) defined in this specific case by

ΦM ≡ Φ

(
M2

s
,
M2

s

)
=

1

λM

[
log2

(
2M2

s(λM +1)−2M2

)
+4Li2

(
2M2

−s(λM +1)+2M2

)
+
π2

3

]
,

(A.4)

λM ≡ λ(M2/s,M2/s) =

√
1 − 4M2

s
, (A.5)

as in eqs. (2.16), (2.17), with x = y = M2/s.

As usual, a symmetric configuration of this type yields

A2(s,M
2,M2) = −A1(s,M

2,M2), (A.6)

A5(s,M
2,M2) = −A4(s,M

2,M2), (A.7)

A6(s,M
2,M2) = −A3(s,M

2,M2) (A.8)
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and in the total amplitude only few simplifications occur

∆λµν(s,M2,M2) = A3(s,M
2,M2) ηλµν

3 (k1, k2) +A4(s,M
2,M2) ηλµν

4 (k1, k2) (A.9)

+A5(s,M
2,M2) ηλµν

5 (k1, k2) +A6(s,M
2,M2) ηλµν

6 (k1, k2).

The analysis of the spurious pole at s = 0 requires the analytic continuation in the euclidean

region (s < 0) according to the iη prescription: s → s + iη, M2 → M2 + iη. In this case

the only trascendental functions requiring the analytic regularizations are the logarithmic

ones, the dilogarithm being well-definite since

2M2

−s(λM + 1) + 2M2
< 1 for s < 0. (A.10)

Then we substitute

log

[
M2

s
− iη

]
→ log

[
−M

2

s

]
− iπ for s < 0 (A.11)

log

[
2M2

−2M2 + s+ sλ
− iη

]
→ log

[
− 2M2

−2M2 + s+ sλ

]
− iπ for s < 0 (A.12)

into the expressions of A3(s,M
2,M2) and A4(s,M

2,M2) and perform the limit for s→ 0.

We obtain

lim
s→0

sAi(s,M
2,M2) = 0 i = 3, . . . , 6 (A.13)

and also

lim
s→0

s∆λµν(s,M2,M2) = 0, (A.14)

showing that in the presence of external massive gauge lines the triangle amplitude ∆λµν

exhibits no poles. This can be confirmed by a parallel analysis based on the L/T parame-

terization whose coefficients are

wL(s,M2,M2) = −4i

s
, (A.15)

w
(+)
T (s,M2,M2) =

4i

(s− 4M2)2

[
(s+ 2M2) log

[
M2

s

]
+

2M2(s−M2)

s
ΦM

]

+
4i

s− 4M2
, (A.16)

w
(−)
T (s,M2,M2) = w̃

(−)
T (s,M2,M2) = 0. (A.17)

Combining the previous results, the whole amplitude becomes

W λµν (s,M2,M2) =
1

8π2

[
wL(s,M2,M2) kλε[µ, ν, k1, k2] − w

(+)
T (s,M2,M2) t

(+)
λµν(k1, k2)

]
.

(A.18)

At this point we perform the same analytic continuations discussed above, shown in

eqs. (A.11), (A.12) and take the limits

lim
s→0

swL(s,M2,M2) = − 4 i (A.19)

lim
s→0

sw
(+)
T (s,M2,M22) t

(+)
λµν (k1, k2) = − 4 i (A.20)
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which, in combination, give a vanishing residue also in this parameterization

lim
s→0

s W λµν (s,M2,M2) = 0. (A.21)

When the mass of the fermion in the loop is non vanishing, m 6= 0, we consider cases

d), e) and f). We take the appropriate limits starting from the expressions in eq. (3.3)–

(3.5) obtaining

d) k2
1 = 0 k2

2 6= 0 k2 6= 0 m 6= 0

A1(s, 0, s2,m
2) = − i

4π2
+

s2
4π4 (s− s2)

D2 −
m2

2π4
C̄0, (A.22)

A2(s, 0, s2,m
2) =

i

4π2
+

s2
4π4 (s− s2)

D2 +
m2

2π4
C̄0, (A.23)

A3(s, 0, s2,m
2) = −A6(s, 0, s2,m

2) =

− i

2π2 (s− s2)
− s2

2π4 (s− s2)
2 D2 −

m2

π4 (s− s2)
C̄0, (A.24)

A4(s, 0, s2,m
2) =

1

2π4 (s− s2)
D2, (A.25)

A5(s, 0, s2,m
2) = − s2

π4(s+ s2)2
(
s− 2m2

)
C̄0 −

(s+ s2)

2π4(s − s2)2
D̄1

+
(2s+ s2)s2
π4(s2 − s)3

D2 −
is2

π2(s− s2)2
, (A.26)

where D2 is defined in eq. (3.9), while D̄1 and C̄0 are the two s1 → 0 limits of D1 and

C0(s1, s2, s,m
2) respectively, that is

D̄1 ≡ lim
s1→0

D1(s, s1,m
2) = iπ2

[
2 − a3 log

a3 + 1

a3 − 1

]
, (A.27)

C̄0 ≡ lim
s1→0

C0(s, s1, s2,m
2) = − iπ2

2(s− s2)

[
log2 a2 + 1

a2 − 1
− log2 a3 + 1

a3 − 1

]
. (A.28)

The coefficients of the w’s in the L/T formulation, in this case, are

wL(s, 0, s2,m
2) = −4i

s
− 8m2

π2s
C̄0, (A.29)

w
(+)
T (s, 0, s2,m

2) =
1

π2(s− s2)2

[
4iπ2s+ 2(s + s2) D̄1 + 4 s

(
2m2 + s2

)
C̄0

+
2
(
s2 + 4s2s+ s22

)

s− s2
D2

]
, (A.30)

w
(−)
T (s, 0, s2,m

2) = − 1

π2(s− s2)2

[
4iπ2s+ 2(s + s2) D̄1 + 4 s2

(
2m2 + s

)
C̄0

+
2
(
s2 − 6s2s− s22

)

s− s2
D2

]
, (A.31)

w̃
(−)
T (s, 0, s2,m

2) =
1

π2(s− s2)2

[
4iπ2s2 + 2(s+ s2) D̄1 + 4 s2

(
2m2 + s

)
C̄0

+
2
(
−s2 + 6s2s+ s22

)

s− s2
D2

]
. (A.32)
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Furthermore, in the case in which the massive amplitude has both external vector lines

on-shell

e) k2
1 = 0 k2

2 = 0 k2 6= 0 m 6= 0

one obtains

A1(0, 0, s,m
2) = − i

4π2

(
1 +

m2

s
log2 a3 + 1

a3 − 1

)
, (A.33)

A3(0, 0, s,m
2) = −A6(0, 0, s,m

2) = − i

2π2s

(
1 +

m2

s
log2 a3 + 1

a3 − 1

)
, (A.34)

A4(0, 0, s,m
2) = − i

2π2s

(
a3 log

a3 + 1

a3 − 1
− 2

)
. (A.35)

These simple results are obtained with a limiting procedure, starting from the scalar tri-

angle diagram with off-shell external lines and involving the function Φ(x, y) [18] already

encountered in the explicit expression of the Rosenberg parameterization. Instead, for the

L/T parameterization we obtain

wL(0, 0, s,m2) = −4i

s

[
1 +

m2

s
log2

(
a3 + 1

a3 − 1

)]
, (A.36)

w
(+)
T (0, 0, s,m2) =

4i

s

[
3 +

m2

s
log2

(
a3 + 1

a3 − 1

)
− a3 log

(
a3 + 1

a3 − 1

)]
, (A.37)

w
(−)
T (0, 0, s,m2) = w̃

(−)
T (0, 0, s,m2) = 0. (A.38)

Finally, the particles can be on-shell and both of mass M and in this case we obtain

f) k2
1 = M2 k2

2 = M2 k2 6= 0 m 6= 0

A1(M
2,M2, s,m2) = − i

4π2
− m2

2π4
C0, (A.39)

A3(M
2,M2, s,m2) =

1

π4s (s− 4M2)

[
iπ2

2

(
2M2 − s

)
−

(
2M2 + s

)
M2

s− 4M2
DM

+

(
2M4(M2 − s)

s− 4M2
−m2(s− 2M2)

)
C0

]
, (A.40)

A4(M
2,M2, s,m2) =

1

π4s (s− 4M2)

[
iπ2M2 +

s2 − 4M4

2(s − 4M2)
DM

+

(
M2(2M4 − 3M2s+ s2)

s− 4M2
+ 2m2M2

)
C0

]
. (A.41)

In the previous expressions we have denoted by C0 the complete expression C0(s1, s2, s,m
2)

in eq. (3.10) computed at s1 = s2 = M2. In addition to this we have defined

DM (M2, s,m2)≡B0(k
2,m2)−B0(M

2,m2)= iπ2

[
aM log

aM +1

aM−1
−a3 log

a3+1

a3−1

]
, (A.42)

aM =

√
1 − 4m2

M2
, a3 =

√
1 − 4m2

s
. (A.43)
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Similarly, the expressions of the w’s invariant amplitudes in the L/T parameterization for

the massive triangle amplitude are given by

wL(s,m2) = −4i

s
− 8m2

π2s
C0, (A.44)

w
(+)
T (s,m2,M2) =

1

π2(s − 4M2)

[
4iπ2 +

4(s + 2M2)

s− 4M2
DM +

(
8m2 +

8M2(s−M2)

s− 4M2

)
C0

]
,

(A.45)

w
(−)
T (s,m2,M2) = w̃

(−)
T (s,m2,M2) = 0. (A.46)

B Results and conventions for the tensor reduction

We collect here some of the definitions and formulas that we have used in the main sections.

We have defined

B0(k
2) =

∫
ddq

1

(q − k)2 q2
(B.1)

and the unique scalar three-point function with all the momenta off-shell and k ingoing,

k1,k2 outgoing

C0(k
2, k2

1 , k
2
2) =

∫
ddq

1

(q − k)2 (q − k1)2 q2
=
iπ2

k2
Φ(x, y), (B.2)

where the Φ(x, y) function is defined in eq. (2.16). The explicit expression of the unrenor-

malized massless two-point scalar integrals in d = 4 − 2ǫ with ǫ > 0 is

B0(k
2) = iπ2

[
1

ǭ
+ log

(
µ2

k2

)
+ 2

]
(B.3)

with a singular part in 1/ǭ, defined as

1

ǭ
=

1

ǫ
− γ − lnπ. (B.4)

The singularities in 1/ǭ and the dependence on the renormalization scale µ cancel out when

taking into account the difference of two of these two-point scalar function B0.

The master integral used for the mi = m 6= 0 case is

C0(k
2, k2

1 , k
2
2 ,m

2) =

∫
ddq

1

((q − k)2 −m2) ((q − k1)2 −m2) (q2 −m2)

= −iπ2

∫ 1

0
dw

∫ w

0
dz

1

bw2 + az2 + cwz − bw − (a+ c)z +m2
(B.5)

for the one-loop three-point function with a = k2
1 , b = k2

2, c = 2k1 · k2. This parametric

form of the scalar triangle has been used in the numerical check of our results for the form

factors Ai against those given by Rosenberg in [12].

The difference between two one-loop two-point functions has been defined in eq. (3.9) as

Di(si, s,m
2) = B0(k

2,m2) −B0(k
2
i ,m

2) = iπ2

[
ai log

ai + 1

ai − 1
− a3 log

a3 + 1

a3 − 1

]
i = 1, 2.

(B.6)
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All the invariant amplitudes Ai have been expressed as functions of Di introduced in

eq. (3.9), showing that the singularities coming from the two-point scalar functions and

depending on the different momenta k2, k2
1 and k2

2 perfectly cancel when inserted in the

complete expansion of the invariant amplitudes Ai for ǫ → 0. Notice that dimensional

reduction and dimensional regularization with a partially anticommuting γ5 give consistent

answers for the anomaly loop with no need of a finite renormalization.
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